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We define the concept of 8 -admissible for a pair of L-fuzzy mappings and establish the existence of common L-fuzzy fixed point
theorem. Our result generalizes some useful results in the literature. We provide an example to support our result.

1. Introduction

A large variety of the problems of analysis and applied math-
ematics relate to finding solutions of nonlinear functional
equations which can be formulated in terms of finding the
fixed points of nonlinear mappings. Heilpern [1] first intro-
duced the concept of fuzzy mappings and established a fixed
point theorem for fuzzy contraction mappings in complete
metric linear spaces, which is a fuzzy extension of Banach
contraction principle and Nadler’s [2] fixed point theorem.
Subsequently several other authors [3-17] generalized this
result and studied the existence of fixed points and common
fixed points of fuzzy mappings satisfying a contractive type
condition.

Zadeh published his important paper “Fuzzy sets” [18],
after that Goguen published the paper “L-Fuzzy sets” [19]. The
concept of L-fuzzy sets is a generalization of the concept of
fuzzy sets. Fuzzy set is a special case of L-fuzzy set when L =
[0, 1]. There are basically two understandings of the meaning
of L, one is when L is a complete lattice equipped with a multi-
plication * operator satisfying certain conditions as shown in
the initial paper [19] and the second understanding of the
meaning of L is that L is a completely distributive complete
lattice with an order-reversing involution (see, e.g., [20-22],
etc.).

In 2012, Samet et al. [23] introduced the concept of 8-
admissible mapping and established fixed point theorems

via -admissible and also showed that these results can be
utilized to derive fixed point theorems in partially ordered
spaces and coupled fixed point theorems. Moreover, they
applied the main results to ordinary differential equations.
Afterwards, Asl et al. [24] extended the concept of f-
admissible for single valued mappings to multivalued map-
pings. Recently, Mohammadi et al. [25] introduced the
concept of B-admissible for multivalued mappings which is
different from the notion of f3,-admissible which has been
provided in [24] and Azam and Beg [26] obtained a common
a-fuzzy fixed point of a pair of fuzzy mappings on a complete
metric space under a generalized contractive condition for «-
level sets via Hausdorff metric for fuzzy sets.

In this paper we introduce the concept of 8z -admissible
for a pair of L-fuzzy mappings and establish the existence of
common L-fuzzy fixed point theorem. We also have given an
example to support our main theorem.

2. Preliminaries
Let (X, d) be a metric space, and denote

CB(X) = {A : A is nonempty closed and bounded
subset of X},

C(X) ={A: Ais nonempty compact subset of X}.
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For € > 0 and the sets A, B € CB(X) define
d(x,A) = }Ielgd(x,y),

d(AB) = inf d(xy). 1)

N(e, A) ={x € X:d(x,a) <e, for somea € A},
E,p=1{€>0:ACcN(eB),BS N(eA)}.

Then the Hausdorft metric d;; on CB(X) induced by d is
defined as

dy; (A,B) = inf E 5. )

Lemma 1 (see [2]). Let (X,d) be a metric space and A, B €
CB(X); then for each a € A

d(a,B) <H(A,B). (3)

Lemma 2 (see [2]). Let (X,d) be a metric space and A,B €
CB(X); then for each a € A, € > 0, there exists an element
b € B such that

d(a,b) < H(A,B) +e. (4)
Definition 3 (see [19]). A partially ordered set (L, %) is called

(i) alattice,ifavb e L,anb e Lforanya,b € L;
(ii) a complete lattice, if VA € L, AA € Lforany A C L;

(iii) distributiveifaVv (bAc) = (avb)A(aVvc), an(bVvc) =
(anb)V(anc)foranya,b,c € L.

Definition 4 (see [19]). Let L be a lattice with top element 1}
and bottom element 0; and let a,b € L. Then b is called a
complement of g,ifavb=1;,andaAb=0;.Ifa € Lhasa
complement element, then it is unique. It is denoted by 4.

Definition 5 (see [19]). An L-fuzzy set A on a nonempty set
X isafunction A: X — L, where L is complete distributive
lattice with 1; and 0.

Remark 6. The class of L-fuzzy sets is larger than the class of
fuzzy sets as an L-fuzzy set is a fuzzy set if L = [0, 1].

The o -level set of L-fuzzy set A is denoted by A, and is
defined as follows:

Ay ={x:op 5 A} if ap € L\{0},
(5)

Ag, =d({x: 0,2, A(0)}).

Here cl(B) denotes the closure of the set B.
We denote and define the characteristic function x; , of
an L-fuzzy set A as follows:

if x ¢ A,

OL
= 6
AL {1L if x € A. (©)

Definition 7. Let X be an arbitrary set and Y a metric space. A
mapping T is called L-fuzzy mapping if T' is a mapping from
X into F(Y). An L-fuzzy mapping T is an L-fuzzy subset
on X x Y with membership function T'(x)(y). The function
T(x)(y) is the grade of membership of y in T'(x).
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Definition 8. Let (X,d) be a metric space and S,T L-fuzzy
mappings from X into F;(X). A point z € X is called an
L-fuzzy fixed point of T'if z € [Tz], , where oy € L\ {0}.
The point z € X is called a common L-fuzzy fixed point of S
andTifz € [Sz]“L n [Tz]aL.

Definition 9 (see [23]). Let X be a nonemptyset, T : X — X,
and f: X x X — [0, 00). We say that T' is f-admissible if for
all x, y € X we have

B(xy)21= B(TxTy) = 1. (7)

Definition 10 (see [24]). Let X be a nonempty set, T : X —
2%, where 2% is a collection of subset of X, f : X x X —
[0,00) and B, : 2% x 2% = [0,00). We say that T is 3,-
admissible if for all x, y € X we have

B(xy)21= B, (Tx,Ty) > 1. (8)

Definition 11 (see [25]). Let X beanonemptyset, T : X — 2X
where 2% is a collection of subset of X and f : X x X —
[0, c0). We say that T is 3-admissible whenever for each x €
X and y € Tx with B(x, y) > 1 we have 3(y,z) = 1 for all
z €Ty.

3. Main Result

In this section, we introduce a new concept of B -admissible
for a pair of L-fuzzy mappings and establish the existence of
common L-fuzzy fixed point theorem.

Definition 12. Let (X, d) be a metric space, § : X x X —
[0,00), and S, T L-fuzzy mappings from X into % (X). The
order pair (S, T) is said to be 35 -admissible if it satisfies the
following conditions:

(i) for each x € X and y € [Sx],, (), where o (x) € L'\
{0}, with B(x, y) > 1, we have B(y,z) > 1 for all
zZ € [Ty]aL(y) # ¢, where oy (y) € L\ {0.};

(ii) for each x € X and y € [Tx]“L(x), where o) (x) €
L\ {0}, with B(x, y) = 1, we have 3(y,z) > 1 for all

z € [Sy]%(y) # ¢, where ot; (y) € L\ {0,}.

If S =T then T is called B -admissible.

Remark 13. 1t is easy to see that if (S, T) is B, -admissible,
then (T, S) is also B%—admissible.

Next, we give a common L-fuzzy fixed point theorem for
Br-admissible pair.

Theorem 14. Let (X, d) be a complete metric space, 3 : X X
X — [0,00), and S, T L-fuzzy mappings from X into F (X)
satisfying the following conditions.

(a) For each x € X, there exists a;(x) € L\ {0.} such that
[Sx], (x> [TX]y, (x) are nonempty closed bounded sub-
sets of X and for x, € X, there exists x; € [Sx;]
with B(xy, x,) = 1.

ar(xo)
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(b) Forall x, y € X, we have

max {B (x, ), B (3 2)} [H (1%]a, o [TV, )]
saq (dx’ [Sx](xL(x)) ta, (d}’> [Ty]aL(y))

+a, (dx, [Ty]%(y)) +ay (dy, [Sx]%(x)) +asd(x,y),
)

where a,, a,, as, a,, and as are nonnegative real num-
bers and Zle a; < 1 and either a, = a, or a; = a,.

(c) (S, T)is ﬁgL -admissible pair.

(d) If {x,} € X, such that f(x,,x,,,) = 1and x,, — x,
then B(x,,x) = 1.

Then there exists z € X such that z € [Sz]aL(z) N [Tz]

OCL(Z)'

Proof. We will prove the above result by considering the fol-
lowing three cases:

(1) a,+a;+as =0,
(2) a, +a,+a; =0,

(3)a,+a;+as+0anda, +a, +a; 0.

Case 1. For x, € X in condition (a), there exist a;(x,) €
L\ {0;} and x; € [Sxol,, (x,) such that B(xp,x;) > 1 and
also there exists a;(x;) € L\ {0.} such that [Sxo]%(x[)) and
[Tx,],, (x,) are nonempty closed bounded subsets of X. From
Lemma 1, we obtain that

d (0, [Tx1]y )

< H ([S%0] o, 2 [ 751 ]y x,))

< B () [H ([Sx0y o [T1 ] )] 10)
< max {B (xg, x;), B (%1, %)}

x [H ([S%0)a, ey [T*1]y )] -

Now, inequality (9) implies that

d (xl’ [Txl]"‘l_(xl))
< ayd (x, [Sxo]aL<x0)) +ayd (xy, [Txl]aL<x1>)
(1)
+ayd (xo, [Txl]aL(x1>)
+a,d (xl, [Sxo]%(xo)) +asd (x, %) .
Using a, + a3 + a5 = 0 together with the fact that

d(x1 [Sxgl g, () = 0, We get

d (xl, [Txl]%(xl)) <ayd (xl, [Txl]%(xl)). (12)

It follows that x; € [T'x,] which further implies that

o (x1)?

d (xl’ [le]le(xl)) <H ([Txl]aL(xly [le]%(xl)) . (13)

By condition (c), for x, € X and x; € [Sx,] g (%) such
that B(x, x,) > 1, we have B(x,,z) > 1 forall z € [Tx,]
Since x, € [Tx,]

oy (x1)°

a,(x,)» therefore B(x, x;) > 1 and hence

d(xl’[sxl]vq(xl)) (14)
14

< B(xp %)) [H ([le]%(xly [Txl]%(xl))] .
Again, inequality (9) implies that

d (1, [531], v)

<ad (xl, [le]%(xl)) +a,d (xl, [Txl]th(xl))

(15)
+ayd (xl, [Tx,]

“L(’ﬁ))
+ayd (xy, [le]ocL<x1)) +asd (x1,x,).

Since a; +a; +as = 0 and d(x,, [Tx;], () = 0, we get

d (xl, [le]%(xl)) <a,d (xl, [le]%(xl)) , (16)

which implies that x; € [Sx,], (. )and hence

ag (x;

x; € [Sx;] e N [Tx,]

a, oy (xp)

17)

Case 2. For x, € X in condition (a), there exist a;(x,) €
L\ {0.} and x; € [Sxo]“L(XU) such that B(x;,x;) > 1 and
also there exists o (x;) € L\ {0} such that [Sxo]%(xo) and
[Txl]%(xl) are nonempty closed bounded subsets of X. By
condition (c), we have B(x,,x,) > 1 for all x, € [Tx,]

ap(x;)"
From Lemma 1, we obtain that
d (xz, [sz]aL(Xz))
<H ([Txl]aL(xly [SxZ]fo(X2))
< ﬁ (xl’xz) [H ([sz](xL(xz)’ [Txl](xL(xl))]
< max {B(xy,%,), B (x,, 1)}
(18)
x[H ([SxZ]ocL(xz)’ [Txl]mxl))]
<ad (xz, [SxZ]“L(XZ)) +a,d (xl, [Txl]aL(xl))
+ayd (xz, [Txl]%(xl)) +a,d (xl, [SXZ]th(xz))
+asd (x5, %) .
Using a, + a, + a; = 0 together with the fact that
d(xy, [Txy]y (x,)) = 0, we get

d (x2, [sz]%(xz)) <ad (xz, [sz]%(xz)) . (19)

It follows that x, € [Sx,] which further implies that

ap(x;)’

d (xz, [sz]“L(xz)) <H ([sz]%(xz), [sz]%(xz)). (20)



By condition (c), we have f(x,, x,) > 1, and hence

d (xz, [sz]% xz))
(21)
< B (x5 %,) [H ([SXZ]th(Xz)’ [Tx ]aL xz))]
Again, inequality (9) implies that
d (xz, [TxZ]aL(xz))
<ad (xz, [sz]%(xz)) +a,d (xz, [sz]le(xz))
(22)

+ a3d (Xz, [TxZ]ocL(xz))

+a,d (xz, [sz]%(xz)) +asd (x;,%,) .

Since a, + a, + as = 0 and d(x,, [Sx,],, () = 0, we get

d (xz, [sz]%(xz)) < ayd (xz, [sz]%(xz)), (23)

which implies that x, € [Tx,] and hence

ar(xy)

€ [sz]%(xz) N [Tx,] (24)

o (xy)

Case3.Let A = ((a; + a5 +as5)/(1 —a, —a;)) and y = ((a, +
a,+as)/(1-a, —ay)). Next, we show thatifa, = a, ora, = a,,
then 0 < Ap < 1.

Ifa; = a,,then A,y < landso0 < Ay < 1.Nowifa, = a,,
then

0</\‘u:(a1+a3+a5><a2+a4+a5>

1-a,-a;s 1-a,—a,
_(a1+a3+a5>(a1+a4+a5> (25)
N 1-a,-as 1-a,-a

B (al +a3+a5)<a1 +a4+a5) -1

\l-a -aq 1-a, - a, '
By condition (a), for x, € X, there exists a;(x;) € L\ {0;}
such that [Tx; ] «,(x,) i @ nonempty closed bounded subset of

X. Since a; + a5 + a; > 0, by Lemma 2, there exists x, €
Ve () such that

d (x1,x,)
<H ([Sxo]%(x()), [Txl]%(xl)) +a, +a; +as

< B(xgox,) [H ([SxO]aL o [T g )]

+a;, tas;+as

< max {B (0, ;) > B (%1, %)}

X [H ([SxO]ocL(xo)’ [Txl]ocL(xl))] ta, +ta;+as
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<ad (xo, [Sxo] ) +a,d (xl, [Tx,]

"‘L(’ﬁ))

az(xo)

+ an (xO’ [Txl](xL(xl)) + a4d (xl’ [SxO]“L(xo))

+asd (xg, %) + a;, +ay + as
< (ay +as)d (xp, x,) + ayd (x, x,)

+ayd (xg, X,) + a; + as + as

< (ay +as +as)d (xg, %) + (4, + a3) d (x, x;)

+a, +a; + as.
(26)
This implies that

d(x,x,) < A (x¢, ;) + A (27)

By the same argument, for x, € X, there exists o;(x,) €
L\ {0;} such that [SxZ]ocL(xz) is a nonempty closed bounded
subset of X. Since a, + a, + a5 > 0, by Lemma 2, there exists
x3 € [Sx,], («,) such that

d (x,,x3) < H([Txl]%(xl), [SXZ]“L(XZ)) +A(a, +a,+as).
(28)

By condition (c), for x, € X and x; € [Sxo]aL(xO) such that
B(xg, %) = 1, we have B(x,,x,) > 1 for x, € [Tx,] ) So
we have

d (x,, x3)

o (o

H([Txl] (1)’ [Sx,], (xz)) +A(ay +a, +as)

=H ([sz] , [Txl]aL(xl)) +A(a, +a, +as)

Txl]‘XL(xl))]

ar(xy)

< B(x1xy) [H ([sz]%(xz)’ [
+A(a, +a, +as)

< max {B(x;,%,), B (x5, %,)}
X [H ([SxZ]‘XL(Xz)’ [Txl]“L(x1))] +A (GLZ tagt aS)
<ad (xz, [SxZ]aL(x2)) +a,d (xl, [Txl]aL(xl))

<x1>) +a,d (xl’ [szlaL<xz))

+asd (xy, %) + A(ay +a, +as)

+ayd (xz, [Txl]aL

< ayd (x,,%3) + (@, +a5) d (x,, x,)
+aud(x),x;5) +A(a, +a, +as)
<(ay+a,+as)d(x,x,)

+(ay+ay)d(xy,x3) +A(a, +a, +as).
(29)
This implies that
d (x5, x3) < pd (x1,x,) + M. (30)
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By repeating the above process, for x; € X, there exists
ap(x3) € L\ {0} such that [Tx;], (., is a nonempty closed
bounded subset of X. From Lemma 2, there exists x, €
[Tx5] () such that

d(x;,x,) <H ([sz]%(xz), [Tx3]aL(x3)) +Au(a, +a;+as).
(31)

By condition (c), for x; € X and x, € [Tx,], (, ) such that
Bxy,x;,) = 1, we have B(x,, x5) > 1 for x5 € [Sx,] o So
we have

d (x5, x4)
< H (8%, o [T 0))
+Au(a; +ay +as)
gp@P@HHﬂ&ﬂmmJ“ﬂmmﬂ
+Au(a; +ay +as)
< max {B (x, x3), B (x5, %))}

X [H ([sz]%(xz), [Tx3]zxL(x3))]

+Au(a, +ay +as)

ar(x

< ald (x2> [SXZ]zxL(xz)) + an (x3’ [Tx3]th(x3))

+ asd (x,, [Tx3]aL(x3)) +a,d (x3, [SxZ]aL(xz))
+asd (x,, x3) + M (a +as + as)

< (a; +as)d (xy,x3) + ayd (x5, x4)
+ayd (x5, x,) + A (a; + az +as)

< (a; +as +as)d (x,, x3)

+(ay +a3)d (x5, x,) + A (a, + as +as) .
(32)

This implies that
d (x5, x4) < A (x5, x3) + A (Ap). (33)
By induction, we produce a sequence {x,} in X such that
Xoks1 € [Ska]aL(sz)’
Xopsn € [Tkaﬂ]aL(xzm), k=0,1,2,..., (34)
B(x, 1,x,) =1, VneN.
Now, we have
d (%15 Xok42)

<H ([SXZk]ch(xzk)’ [Tx2k+1]%(x2k“))

+ (A‘“)k (a, + a5 + as)

< B (% Xoges1)
% [H ([SXZk]aL(xzk)’ [szkn]%(xzkﬂ))]
+ () (o + a + a)
< max {B (%0 Xak41) > B (¥ak41> %21)}
X [H ([szk]%(x%), [Tx2k+l]ocL(x2k+1))]
+(M)* (a, + a + as)
< ayd (%0 [S%ak] )
+a,d (szw [Tx2k+1](xL(x2k+1))
+ayd (xzks [Tx2k+1]aL(x2k+l))
+a,d (x2k+1, [szk]%(m)) + asd (X1, Xop41)
+ ()" (ay + as + as)
< (ay +as) d (x50 Xps1)
+ ayd (X, 1> Xoprs) + A3d (X Xopss)
+ ()" (@, +a; + as)
< (a; +a; +as)d (X Xps1)

k
+(ay +a3) d (X1 Xoksn) + () () + a3 +as).
(35)

This implies that
d (X415 Xop42) < Ad (X Xppy1) + A()‘P‘)k' (36)
Similarly,
d (Xk425 Xops3)
<H ([Sx2k+2]%(xzk+2)) [szkﬂ]%(xzkﬂ))
+ (A/,{)kA (a, +a, +as)
< B (Xoks1s Xoks2)
% [H ([S%ak00) 0 [Tkt Lo )]
+ (,\‘u)kA (a, +a, + as)
< max {B (%15 Xae2) » B (¥ars20 X1}
X [H ([Sx2k+2]aL(xzk+2)’ [Tx2k+1]aL(xzk+1))]
+ (A (ay + a, + ay)
<ad (x2k+2, [Sx2k+2]o¢L(x2k+z))
+a,d (xzkﬂ, [szk+1]aL(x2k+1))
+ayd (x2k+2’ [Tx2k+1]a,_(x2k+1))
+a,d (x2k+1’ [Sx2k+2]aL(xzk+z))

+ asd (Xgpi0s Xops1) + ()H“)k)‘ (ay + ay + as)



< ayd (X0 Xor3)

+(ay + a5) d (Xppes1 Xoks2)

+ yd (Xpjer1> Xojey3) + (}W)kA (a, +a, +as)
< (ay +ay +a5) d (Xpep1 Xops2)

+(ay +ay) d (X140 Xk13)

+ (/\y)k/\ (ay+a,+as).
(37)

This implies that

k+1
d (Xpps20 Xoks3) < pd (K> Xopn) + (M) (38)
From (36) and (38), it follows that, for each k = 0,1,2,.. .,

d (x2k+1> x2k+2)

< Ad (%51 Xot1) + M)

< M (s 2a) + ()] + A (g0)”

= (M) d (xgprs 30) + 2A(Ap0)"

< (M) [Md (s xr) + M) | +2200)

k
= () Ad (X5 Xpey) + 3M(Au)

< AA)*d (x0x,) + 2k + 1) A(A),
d (x2k+2> x2k+3)

k
< pd (Xops1s Xopra) + () o

< ) d (g0 x,) + 2k +2) ().
(39)

Then for m < n, we have

A (Xgmi1> Xane1) < A (Xpmi1s Xomia) + A (X2420 X21m43)

+d (Xgymi3s Xomea) + o+ d (X X241)

n

<[ AT 0w+ 3 | d )

=m+1

n—1 X n i
+AY Qi+ 1) (M) + ) 2i(Ap).
i=m i=m+1
(40)
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Similarly, we obtain that

) < | 000 42500 [

i=m

n . n—1 .
+ Y 2i(An) + 1Y @i+ 1) (M),

n—1 i n—1 i
d (X35 %3, < [Z(A#)l + /\Z(/\#)l] d (xg,%,)
n—1 . n-1 i
+ Y 2i(A) + A (2i+ 1) (),
n—1 ; n—1 ;
d (X1 Xp) < [AZ(M") + Z (An) ]d(xo’xl)
i=m i=m+1
n—1 . n—1 .
+AY Qi+ 1) (M) + ) 2i(Ap).
i=m i=m+1

(41)

Since 0 < Ay < 1, so by Cauchy’s root test, we get Y (2i +
1)(A[4)i and ) 21'()»‘14)" are convergent series. Therefore, {x,,} is
a Cauchy sequence in X. Now, from the completeness of X,
there exists z € X suchthatx, — zasn — 00.By condition
(d), we have B(x,_,,z) > 1 for all n € N. Now, we have

d (X35 [S2]a(z))
< H([Txyn ]y o, [S7la)
= H ([S2]o2)» [TxZH—l]aL(inﬂ))
< B (%20-152) H (182lagep [Tt )y v, )
< max {B (x,,-1,2) » B (2, Xp0-1)}
% H ([Szlaop [Toan 1o, )

< ayd (2, [S2]u, )

L (Xan1

+ azd (x2n—1’ [szn_l]a]u(xznfl))

+ a3d (Z, [szn_l]“L(xzn—l))
+a,d (x2n_1, [SZ]aL(Z)) +asd (2, %5, 1)

<ad (Z> [Sz]aL(z)) + ayd (X 15 %3) + a3 (2, x3,)

+a,d (xZn—l’ [Sz]ocL(z)) +asd (z, xZn—l) .
(42)

Since

d (2, [S2]u ) < d(2.5%5,) + d (%3 [SZlay () (43)



The Scientific World Journal

so we get
d (2 82],))
<d(z,x,,) +a,d (z, [Sz]“L(z))
+ ayd (X315 X3) + A3 (2, X3,)
+a,d (g 15 [S2 0, (z)) + a5 (2, %3, (44)
<(1+a;)d(z,x,,)
+(a, +as)d (2, %y, 1) + ayd (xX3,_1, X5,,)
+(a, +a,)d (2, [Szlo, ) -
This implies that

d (Z, [Sz]“L(Z))
1+as
<(—5 _)d(z
< (72t )aem)

<&) d (2, x3,1)

1-a,-a,

a
+ (Tﬁ_%) d (%31, X2) -

Letting n — 00, we have d(z, [Sz] aL(Z)) = 0. It implies that
z € [Sz],, (). Similarly, by using

d (Z, [Tz]ocL(z)) < d (Z’ x2n+1) +d (x2n+1’ [Tz]ocL(z)) > (46)

we can show that z € [Tz], (,). Therefore, z € [Sz]
[Tz],, (). This completes the proof.

(45)

a(z) n

O

Next, we give an example to support the validity of our
result.

Example15. Let X = [0,1],d(x, y) = |x— y|, whenever x, y €
X; then (X, d) is a complete metric space. Let L = {6, w, 7, k}
with § 5 w= K, 02, T, k, w and 7T are not comparable;
then (L, %;) is a complete distributive lattice. Define a pair of
mappings S, T : X — F(X) as follows:

(k, fO<t<Z,
6
X X
w, if=<t<=,
6 3
S(x)(t)=<T X<t
bl 3 —23
5, if2<t<l,
2
X (47)
[, ifO<t< =,
12x
6, if —<t<=,
12 8
UCIORS PR
bl —4)
T, if£<tsl.
4

7
Define : X x X — [0, c0) as follows:
Bxy)=qlx-y ’ (48)
1, x=y.

For all x € X, there exists o (x) = «, such that

x x
s =[o,—], T =[o,—], 49
[Sx], 5 [Tx], 1 (49)

and all conditions of the above theorem are satisfied. Hence,
there exists 0 € X, such that 0 € [SO]“L(O) n [TO]“L(O).

Corollary 16. Let (X,d) be a complete metric space, § : X x
X — [0,00), and S, T fuzzy mappings from X into F (X) satis-
fying the following conditions.

(a) For each x € X, there exists a(x) € (0, 1] such that
[8x] (x> [TX] () are nonempty closed bounded subsets
of X and for x, € X, there exists x, € [Sxoly, ) with

Blxg, x;) = 1.
(b) Forall x, y € X, we have

max {B(x, y), B (3, %)} [H ([S¥acx» [TV )]
<a (dx, [Sx]oc(x)) +a, (dy, [Ty]a(y))

+a, (dx, [Ty]“(y))

+a, (d)” [Sx]oc(x)) +asd (x, )’) >

(50)

where a,, a,, a, a4, and as are nonnegative real num-
bers and Zle a; < 1 and either a, = a, or a; = a,.

(c) (5, T) is Bg-admissible pair.

(d) If {x,} € X, such that 5(x,,x,,,) = 1and x, — x
then B(x,,x) > 1.

Then there exists z € X such that z € [Sz],,) N [TZ]

oz al2)*
Proof. Consider an L-fuzzy mapping A : X — F(X)
defined by
AX = XLy, - (51)
Then for o) € L\ {0}, we have
[Ax]“L =Tx. (52)

Hence by Theorem 14, we follow the result.
If we set B(x, y) = 1 for all x, y € X in Corollary 16, we
get the following result. O

Corollary 17 (see [26]). Let (X, d) be a complete metric space
and S, T fuzzy mappings from X into F(X) satisfying the fol-
lowing conditions:

(a) for each x € X, there exists a(x) € (0,1] such that
[8x] (x> [TX] () are nonempty closed bounded subsets
of X;



(b) forall x, y € X, we have
< a,d (%, [$X]a(w) + @ (1, [TY] )

+ ayd (x, [TJ’]a(y)) + a4d (9, [SX] o)

+asd (x,y),

(53)

where a,, a,, as, a,, and as are nonnegative real num-
5 .
bersand ), | a; < 1 and either a, = a, or a; = a,.

Then there exists z € X such that z € [Sz],,) N [TZ]

oz a(z)*
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